*In vivo c*haracterization of biological tissue using pulsed photothermal radiometry (PPTR)

Boris Majaron

Jožef Stefan Institute, Ljubljana, Slovenia Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

boris.majaron@ijs.si; http://www-f7.ijs.si/en

<u> Complex</u>matter

Outline

Introduction

- theoretical foundations
- application principles

1. Specifics of biomedical applications

• spectral variation of the IR absorption coefficient

2. In vivo applications: Temperature depth profiling

- monitoring of laser tatoo removal
- structural characterization of vascular lesions
- response of a port-wine stain lesion to laser treatment
- Nd:YAP laser (1342 nm) energy deposition in skin
- assessment of the maximal safe radiant exposure

3. In vivo applications: Model-based inverse analysis

- assessment of structure and composition of human skin
- analysis of hemoglobin dynamics in traumatic bruises
- combining photothermal radiometry with optical spectroscsopy

Pulsed photo-thermal radiometry (PPTR)

1. Pulsed irradiation establishes a temperature depth profile, which then evolves with time:

$$\underline{\Delta T(z,t)} = \int_{z'=0}^{\infty} \Delta T(z',t=0) G_{\mathrm{T}}(z',z,t) \,\mathrm{d} \, z'$$

2. Transient increase in IR emission:

$$\underline{\Delta S_{\lambda}(t)} = C \,\mu_{\mathrm{IR}} \,B_{\lambda}'(T_{\mathrm{b}}) \int_{z=0}^{\infty} \underline{\Delta T(z,t)} \,e^{-\mu_{\mathrm{IR}}z} \,\mathrm{d}z$$

3. Leading to enclosed expression for the radiometric transient:

$$\underline{\Delta S_{\lambda}(t)} = C \mu_{\mathrm{IR}} B_{\lambda}'(T_{\mathrm{b}}) \int_{z=0}^{\infty} \Delta T_{0}(z') \int_{z'=0}^{\infty} G_{\mathrm{T}}(z',z,t) e^{-\mu_{\mathrm{IR}}z} \mathrm{d}z \, \mathrm{d}z'$$

Milner et al., J. Opt. Soc. Am. A 12, 1479 (1995); Majaron et al., Phys. Med. Biol. 47, 1929 (2002)

Jožef Stefan Institute 🧼 🤣 complex matter

PPTR application principles

$$\Delta S_{\lambda}(t) = C \mu_{\text{IR}} B_{\lambda}'(T_{\text{b}}) \int_{z=0}^{\infty} \Delta T_{0}(z) \int_{z'=0}^{\infty} G_{\text{T}}(z, z', t) e^{-\mu_{\text{IR}}z'} dz' dz$$

1.) Controlled $\Delta T_0(z)$ and IR penetration depth \rightarrow Assess thermal properties

- standard approach for material characterization $(D_T = "flash technique")$
- applicable to layered structures, e.g., films on substrates)

Long et al., Appl. Phys. Lett. 51, 2076 (1987)

- **2.)** Controlled $\Delta T_0(z)$ and thermal properties \rightarrow **Determine** $\mu_{IR}(\lambda)$
- **3.)** Controlled thermal properties and IR penetration depth \rightarrow Assess $\Delta T_0(z)$
 - a.k.a. temperature depth profiling
 - model-based analysis

 (e.g., assessment of absorption and scattering coefficients in biological tissue)

 Prahl et al., Phys. Med. Biol. 37, 1203 (1992)

PPTR temperature profiling in vivo

Pulsed photothermal radiometry of port-wine-stain lesions

Steven L. Jacques, J. Stuart Nelson, William H. Wright, and Thomas E. Milner

1. Heat diffusion:
$$\Delta T(z,t) = \int_{z'=0}^{\infty} \Delta T(z',t=0) \underline{G_T(z',z,t)} \, dz'$$

Thermal Green's (point-spread) function:

combine:
$$\Delta S_{\lambda}(t) = C \mu_{\mathrm{IR}} B_{\lambda}(T_{\mathrm{b}}) \int_{z=0}^{\infty} \Delta T_{0}(z) \int_{z=0}^{\infty} G_{\mathrm{T}}(z,z',t) e^{-\mu_{\mathrm{IR}}z'} dz' dz$$

Kernel function:

$$\Delta S_{\lambda}(t) = \int_{z=0}^{\infty} K(z,t) \Delta T_{0}(z) dz$$

K(z',t) = $\frac{1}{2}C B_{\lambda}'(T_{0}) \mu_{\mathrm{IR}} e^{-\frac{z'^{2}}{4Dt}} \left\{ erfcx(u_{-}) + erfcx(u_{+}) - \frac{2h}{(h-\mu_{\mathrm{IR}})} [erfcx(u_{+}) - erfcx(u_{1})] \right\}$
where:

$$erfcx(u) = exp(u^{2}) (1 - erf(u))$$

$$u_{\pm} = \mu_{a} \sqrt{Dt} \pm \frac{z'}{2\sqrt{Dt}}$$

$$u_{1} = h \sqrt{Dt} \pm \frac{z'}{2\sqrt{Dt}}$$

The inverse problem of PPTR profiling

Forward problem (= heat diffusion + IR emission):

$$\Delta S(t) = \int_{z=0}^{\infty} K(z,t) \,\Delta T_0(z) \,\mathrm{d}z$$

$$S = K T$$

Inverse problem: $T = K^{-1} S$

- matrix $\, K \,$ has a defect rank non-invertable
- inverse problem is "severely ill-posed"
- no unique solution in general
- \rightarrow iterative reconstruction multidimensional minimization of

$$\left\|\boldsymbol{r}^{(l)}\right\|^2 = \left\|\mathbf{K}\boldsymbol{T}^{(l)} - \boldsymbol{S}\right\|^2$$

1. Specifics of biomedical applications

- Excitation source
- Acquisition spectral band
- Spectral variation of the IR absorption coefficient

Selection of the excitation laser (pulsed!)

Note: You can apply PPTR with any pulsed light source !

COMPLEXmatter

Radiative emission:

$$\Delta S(t) = C B_{\lambda}'(T_0) \mu_{\mathrm{IR}} \int_{z=0}^{\infty} \Delta T(z,t) e^{-\mu_{\mathrm{IR}}z} dz$$

Planck's law:

Temperature derivative:

PPTR experimental setup

Fast IR camera (FLIR SC7500):

- $\lambda_{acq} = 3.5-5.1 \text{ mm}$
- $v_{acq} = 1000 \text{ fps} (80 \times 100 \text{ px})$
- $AOI \le 1.5 \text{ x} 1.5 \text{ mm}^2$

PPTR experimental setup

Portable system:

Vigo Systems, PVI-2TE-6

- HgCdZnTe (λ = 3.0–6.2 μ m)
- 2-stage TEC cooled (-40 °C)
- $v_{acq} \le 20 \text{ kHz}, \text{ AOI: } 1 \times 1 \text{ mm}^2$

• $v_{acq} \leq 50 \text{ kHz}$, AOI: $\phi = 1 \text{ mm}$

Photodiode (for precise synchronization)

Variation of μ_{IR} within the acquisition spectral band

Broad-band IR signal acquisition:

$$\Delta S(t) = C \int_{\lambda_{\text{low}}}^{\lambda_{\text{high}}} \underline{\mu_{\text{IR}}(\lambda)} \ \underline{R(\lambda)} \ \underline{B_{\lambda}(T_{\text{b}})} \int_{z=0}^{\infty} \Delta T(z,t) \ e^{-\underline{\mu_{\text{IR}}(\lambda)z}} dz \ d\lambda$$

Monochromatic approximation:

$$\Delta S(t) = C \,\underline{\mu_{\text{eff}}} \, B_{\lambda}'(T_b) \int_{z=0}^{\infty} \Delta T(z,t) \, e^{-\underline{\mu_{\text{eff}}} z} \, \mathrm{d}z$$

- How critical is the selection of μ_{eff} ?
- How to determine the optimal μ_{eff} value ?
- Does use of this approximation limit the performance of PPTR analysis in biological tissues ?

Majaron et al., Phys. Med. Biol. 47, 1929 (2002)

Note: Reconstruction quality depends critically on μ_{eff} !

A 10% deviation from the optimal μ_{eff} value introduces significant artifacts !

Majaron and Milanič, Phys. Med. Biol. 53, 255 (2008)

 $\delta = \frac{\|\text{image} - \text{object}\|}{\|\text{object}\|}$

Optimal μ_{eff} - our analytical approach

Introduction of multispectral kernel function

Layered agar gel sample

- agar powder (2.5 wt.%)
- distilled water
- TiO₂ powder (for scattering)

Absorbing layer:

- colored polyethilene foil $(d \sim 7 \,\mu\text{m})$
- at different depths ($z = 40-900 \ \mu m$)

COMPLEXmatter

* Milanič et al, Phys. Med. Biol. 54, 2829 (2009) ** Milanič et al., Proc. SPIE, 7731-00 (2009)

Evaluation of PPTR temperature profiling *in vitro*

PPTR-determined absorber depths match the results from high-resolution MRI.

COMPLEXmatter

Milanič et al, Phys. Med. Biol. 54, 2829 (2009)

Evaluation of PPTR temperature profiling *in vitro*

Summary 1 - PPTR temperature profiling

Advances in

- forward model formulation (= spectrally composite kernel),
- signal preconditioning (nonuniform binning), and
- reconstruction algorithms

have enabled temperature depth profiling in biological tissue (phantoms) with signifficantly smaller axial blurring than previously believed possible.

These improvements enable

- development of novel biomedical applications (research, clinical)
- improvements in other PTR applications (material characterization, NDE)

2. In vivo application examples:

Temperature depth profiling

- monitoring of laser tatoo removal •
- structural characterization of vascular lesions
- response of a port-wine stain lesion to laser treatment
- Nd:YAP laser (1342 nm) energy deposition in skin •
- assessment of the maximal safe radiant exposure •

Characterization of tattoos in human skin

IR detector:

- InSb, LN cooled
- $\lambda_{acq} = 3.0-5.6 \ \mu m$
- v_{acq} = 50,000 Hz
- FOV = ϕ 1 mm

PPTR laser irradiation:

- $\lambda = 1064 \text{ nm}$
- $t_{\rm p} = 5 \,{\rm ms}$
- $H_0 = 7 \text{ J/cm}^2$

Milanič & Majaron, Proc. SPIE, 8207-0G (2012); J. Laser Health Acad., 68 (2013)

Monitoring of laser tattoo removal

Monitoring of laser tattoo removal

Milanič & Majaron, Proc. SPIE, 8207-0G (2012); J. Laser Health Acad., 68 (2013) PPTR profiling reveals that the tattoo pigment undergoes gradual degradation and removal, although visual impression is not (yet) affected.

Jožef Stefan Institute

Anatomy of human skin and port-wine stain (PWS)

Jožef Stefan Institute

•••

🤼 COMPLEXMATTER

Depth of microvasculature in a port-wine stain

Comparison with Optical Doppler Tomography :

OCT : Amplitude image (scatter)

 $z_{PWS} \sim 220 \ \mu m \ (n = 1.40)$

Li et al., J. Biomed. Opt. 9, 961 (2004)

Study of PWS response to laser treatment

PWS patient:

- female
- fair skin
- laser-treated before

Hypothesis:

- 532 nm heating produces met-hemoglobin
- increases blood absorption at 1064 nm

Vascular laser:

- $\lambda = 532 \text{ nm} + 1064 \text{ nm}$
- *t*_p = 25 ms
- H_0 incrementally increased

Study of PWS response to laser treatment

Radiant exposure incrementally increased: $H_0 = 1.8 - 9.0 \text{ J/cm}^2$

- pulse structure: 4 x 1 ms; sequence duration: $t_p = 25$ ms

COMPLEXmatter

After the pulse sequence (8 pulses, 34 J/cm²), PPTR signals are different

Absorption in the superficial PWS layer is irreversibly reduced at radiant exposures above 5-6 J/cm²

- \rightarrow laser energy reaches deeper into the dermis (PWS)
- → epidermal heating is enhanced (more backscatter, higher fluence)

Results are consistent with conversion of HbO to metHb

- drop in 532 nm absorption $(23 \rightarrow 15 \text{ mm}^{-1})$
- The observed threshold matches earlier reported values (65–72.5 °C; 5 J/cm²)

Same experiment repeated on healthy skin

Enhanced energy deposition in the upper dermis (z < 0.4 mm)

 \rightarrow reduced penetration depth

→ reduced epidermal fluence (less backscatter)

Results are consistent with persistent erythema

Energy deposition profile of a 1342 nm Nd:YAP laser in human skin

PPTR signals from healthy skin sites:

- shoulder (outer), forearm (inner)
- detection area: 1.5 x 1.5 mm²

(Signals are normalized to $H_0 = 10 \text{ J/cm}^2$)

Custom reconstruction code:

- non-uniform signal binning
- multispectral kernel
- minimization using the v-method
- non-negativity constraint

Milanič and Majaron, Laser Surg. Med. 45, 8 (2013)

COMPLEXMATTER

Energy deposition in normal skin at 1342 nm vs. 1064 nm

Temperature profiles induced in the same site with two lasers, scaled to reach the same epidermal temperature rise:

(volunteer LV, shoulder)

Nd:YAP laser is very suitable for controlled heating of the upper dermis, as required for non-ablative skin rejuvenation.

Risks of overheating the epidermis and subcutis are significantly reduced compared to the Nd:YAG laser.

Quantitative comparison with the familiar Nd:YAG laser enables design of a safe and effective clinical protocol.

Milanič and Majaron, Laser Surg. Med. 45, 8 (2013)

Prediction of the maximal safe laser radiant exposure on individual patient basis

- 12 healthy volunteers
 - males and females
 - skin phototypes I–IV

326 distinct test spots

• on the extremities

Alexandrite laser irradiation

- $\lambda = 755 \text{ nm}, t_p = 3 \text{ ms}$
- *d* = 8 mm, 12 mm
- $H_0 = 10 90 \text{ J/cm}^2$
- CS cooling: 30 / 50 ms

The severity of adverse effects:

- crusting and erythema
- 24 hours post treatment
- scored blindly
- on a scale of 1–10

Verkruysse et al., Laser Surg. Med. 39, 757 (2007)

COMPLEXmatter

Radiometric measurements at the same test sites

- 12 healthy volunteers
 - males and females
 - skin phototypes I–IV

326 distinct test spots

• on the extremities

Alexandrite laser

- $\lambda = 755 \text{ nm}, t_p = 3 \text{ ms}$
- *d* = 18 mm
- $H_0 = 6 \text{ J/cm}^2$
- no CS cooling

Fast mid-IR camera:

- model "c" (FLIR, Boston, MA)
- $\lambda_{acq} = 3.0 5.5 \,\mu m$
- v_{acq} = 1000 fps
- AOI < 3.5 x 3.5 mm²

Verkruysse et al., Laser Surg. Med. 39, 757 (2007)

Prediction of the maximal safe radiant exposure

 From this temperature profile (= initial condition), temperature field evolution and <u>epidermal thermal damage</u> at the clinically applied radiant exposure H are predicted using a custom numerical model.

Heat diffusion:

$$\rho c_{p} \frac{dT(x,z,t)}{dt} = k \nabla^{2}T(x,z,t)$$
Thermal denaturation:

$$\Omega(x,z,t) = A \int_{0}^{t} \exp(-E_{a}/RT(x,z,t')) dt'$$

Milanič et al., Lasers Surg. Med. 43, 164 (2011)

COMPLEXMATTE

Prediction of the maximal safe radiant exposure

3. The same numerical model can now be used to predict the maximal safe laser radiant exposure (H_{max}) for any test site, from its PPTR record.

This is obtained by gradually increasing the radiant exposure in the numerical model, until the epidermal damage threshold is reached (e.g., log Ω = -1).

Numerically predicted maximal permissible radiant exposure

COMPLEXmatter

All irradiations at radiant exposures *H* below the individually predicted H_{max} (diagonal line) resulted in negligible or minimal skin crusting (injury score < 2.0).

Summary 2 - Biomedical applications of PPTR profiling

PPTR combines <u>high optical contrast</u> with rather uniform heat transport in soft tissues.

PPTR temperature profiling can provide valuable <u>structural information</u> on selected cutaneous structures, lesions, etc. *in vivo* with sufficient accuracy and robustness for several relevant applications:

- depth of PWS vasculature
- monitoring of tatoo removal

In addition, it provides <u>quantitative information on laser-induced temperature</u> <u>rise</u> and thus a unique insight into light interaction with selected targets

- study of PWS response to laser treatment
- evaluation of a prototype laser system for skin rejuvenation (1342 nm)
- determination of individual safe radiant exposure
- ...

3. Beyond temperature profiling: Model-based inverse analysis

- assessment of structure and composition of human skin
- quantitative analysis of hemoglobin dynamics in traumatic bruises
- combining PPTR and diffuse reflectance spectroscopy (DRS)

Optical model of healthy skin (2-layer)

Jožef Stefan Institute

COMPLEXMATTER

Determination of skin properties using PPTR

* Wang et al., Comput. Methods Programs Biomed. 47:131 (1995)

Assesment of the healthy skin specifics

- epidermal thickness: $d_{epi} = 0.17 \text{ mm}$
- melanin concetration: $f_{mel} = 1.4 \%$
- blood concentration: $f_{bl} = 2.7 \%$
- blood oxygenation: S = 80 % (fixed)

Vidovič et al., J. Biomed. Opt. 20, 017001 (2015)

Study of hemoglobin dynamics in traumatic bruises

Motivation

Enable objective determination of the bruise age in forensic investigations

- currently based on subjective impression (the perceived color)
- inaccurate due to uncontrolled ambient lighting, skin thickness, pigmentation ...

Specific goal

Jožef Stefan Institute

Establish a mathematical model of the bruise dynamics

assess the key parameter values in controlled experiments

Analytical model of the bruise dynamics

Randeberg et al, Lasers Surg Med. 38, 277 (2006)

<u>Hemoglobin</u> concentration, $f_h(z,t)$:

$$\frac{\partial f_{\rm h}}{\partial t} = D_{\rm h} \nabla^2 f_{\rm h} - \frac{f_{\rm h}}{\tau_{\rm h}}$$

- $D_{\rm h}$: mass diffusion coefficient

Bilirubin concentration, $f_{\rm b}(z,t)$:

$$\frac{\partial f_{\rm b}}{\partial t} = \frac{f_{\rm h}}{\tau_{\rm bg}} - \frac{f_{\rm b}}{\tau_{\rm br}}$$

- \mathcal{T}_{br} : bilirubin generation
- $\tau_{\rm br}$: lymphatic system drainage + conversion to hemosiderin

Temperature profiles induced in healthy vs. bruised skin

Analysis of bruise dynamics using PPTR

II. Temporally variable: τ

Constant: D, d_{der}, T

Note: A nice fit does not guarantee that the results are accurate ! - monitor the correlations between the fitted variables !

Vidovič et al., J. Biomed. Opt. 20, 017001 (2015)

Add: Diffuse Reflectance Spectroscopy (DRS)

24 healthy volunteers (so far)

- males and females
- age: 20-60 years
- skin phototypes: I-III
- known time of injury
- skin surface intact

DRS measurements:

- integrating sphere (ISP-REF, Ocean Optics)
- $\lambda = 400-650 \text{ nm}$ (USB4000, Ocean Optics)
- correct raw DRS data for single-beam substitution error (SBSE)*
 - * Vidovič et al., J. Biomed. Opt. 19, 027006 (2014)

COMPLEXmatter

Vidovič et al., Proc. SPIE, 9540, 95400E (2015)

<u>3-layer</u> optical model of intact skin

Characterization of intact skin by combined PPTR and DRS

Parameters of intact skin - the combined PPTR/DRS approach

- epidermal thickness: •
- dermal thickness: •
- melanin content: •
- epidermal blood content: .
- dermal blood content: •
- oxygen saturation: •
- adipose scattering: A =٠

COMPLEXmatter

- $d_{\rm epi} = 0.16$ mm $d_{\rm der} = 0.88 \, {\rm mm}$ $f_{\rm mel} = 0.80 \%$ $f_{\rm bl,epi} = 0.2 \%$ 1.37 % $f_{\rm bl} =$ 38 % S =
- 2.0

Increasing the dermal scattering amplitude (by 15%) improves the match !

- epidermal thickness:
- dermal thickness:
- melanin content:
- epidermal blood content:
- dermal blood content:
- oxygen saturation:
- adipose scattering:

 $d_{der} = 0.66 \text{ mm}$ $f_{mel} = 0.9 \%$ $f_{bl,epi} = 0.2 \%$

 $d_{\rm epi} = 0.15 \, {\rm mm}$

- $f_{\rm bl} = 1.7 \%$
- S = 37 %

A =

1.7 Nina Verdel et al., Poster P.13 (2016)

Bruise evolution timeline

- Hb mass diffusivity: $D_{\rm h} = (8.6 \pm 0.3) \times 10^{-4} \, {\rm mm^2/h}$
- Hb decomposition time:

 $\tau = (121 \pm 8) h$

- source depth: $d_{\text{source}} = (0.54 \pm 0.01) \text{ mm}$
- source time:
 - $T = (50 \pm 1) h$

Marin et al., Laser Surg. Med. sup 27 (2016)

Bruise evolution timeline

Analysis of bruise dynamics by combined PPTR and DRS

II. Allow to vary with time: τ_h , d_{der} , S_h , τ_{bg}

Example #2: Twin bruises

Left knee:

Right knee:

women, 29 y. (ER_12, ER_13)

Twin bruises: results

Summary 3 - Model-based inverse analysis

Model-based analysis reduces ill-posedness of the inverse problem

- by limiting the number of free variables, and
- constraining them by applying prior knowledge

This enables noninvasive assessment of skin structure and composition

• using numerical modeling of light transport in tissue (inverse Monte Carlo)

Combining PPTR with DRS improves the robustnes of inverse analysis

• epidermal and dermal thickness, melanin content, blood content, oxygenation ...

The approach is amenable to analysis of intra- and inter-patient variations, characterization of cutaneous lesions, etc.

- Hb dynamics in traumatic bruises (mass diffusion, decomposition time ...)
- assessment of both absorption and scattering properties might be possible *

* Nina Verdel et al., Poster P.13 (2016)

J. Stuart Nelson

Beckman Laser Institute & Medical Clinic University of California at Irvine

Wim Verkruysse (Philips Research, Eindhoven, Netherlands)

Bernard Choi(Beckman Laser Institute, Dept. of Biomedical Engineering; UC Irvine)Bincheng Li(Institute of Optics and Electronics, CAS, Shuangliu, China)

Matija Milanič, Luka Vidovič,*

Ana Marin, Nina Verdel

Jožef Stefan Institute, Ljubljana, Slovenia

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

* Analysis and Research Center, Bank of Slovenia

